Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Genom Med ; 6(1): 74, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531397

RESUMO

Cerebral palsy (CP) is the most common cause of childhood physical disability, with incidence between 1/500 and 1/700 births in the developed world. Despite increasing evidence for a major contribution of genetics to CP aetiology, genetic testing is currently not performed systematically. We assessed the diagnostic rate of genome sequencing (GS) in a clinically unselected cohort of 150 singleton CP patients, with CP confirmed at >4 years of age. Clinical grade GS was performed on the proband and variants were filtered, and classified according to American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines. Variants classified as pathogenic or likely pathogenic (P/LP) were further assessed for their contribution to CP. In total, 24.7% of individuals carried a P/LP variant(s) causing or increasing risk of CP, with 4.7% resolved by copy number variant analysis and 20% carrying single nucleotide or indel variants. A further 34.7% carried one or more rare, high impact variants of uncertain significance (VUS) in variation intolerant genes. Variants were identified in a heterogeneous group of genes, including genes associated with hereditary spastic paraplegia, clotting and thrombophilic disorders, small vessel disease, and other neurodevelopmental disorders. Approximately 1/2 of individuals were classified as likely to benefit from changed clinical management as a result of genetic findings. In addition, no significant association between genetic findings and clinical factors was detectable in this cohort, suggesting that systematic sequencing of CP will be required to avoid missed diagnoses.

2.
NPJ Genom Med ; 4: 27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31700678

RESUMO

A growing body of evidence points to a considerable and heterogeneous genetic aetiology of cerebral palsy (CP). To identify recurrently variant CP genes, we designed a custom gene panel of 112 candidate genes. We tested 366 clinically unselected singleton cases with CP, including 271 cases not previously examined using next-generation sequencing technologies. Overall, 5.2% of the naïve cases (14/271) harboured a genetic variant of clinical significance in a known disease gene, with a further 4.8% of individuals (13/271) having a variant in a candidate gene classified as intolerant to variation. In the aggregate cohort of individuals from this study and our previous genomic investigations, six recurrently hit genes contributed at least 4% of disease burden to CP: COL4A1, TUBA1A, AGAP1, L1CAM, MAOB and KIF1A. Significance of Rare VAriants (SORVA) burden analysis identified four genes with a genome-wide significant burden of variants, AGAP1, ERLIN1, ZDHHC9 and PROC, of which we functionally assessed AGAP1 using a zebrafish model. Our investigations reinforce that CP is a heterogeneous neurodevelopmental disorder with known as well as novel genetic determinants.

3.
Handb Clin Neurol ; 147: 331-342, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29325622

RESUMO

Cerebral palsy (CP) is a broad clinical descriptor that encompasses a heterogeneous group of nonprogressive neurodevelopmental disabilities affecting movement and posture. While linked by the presence of damage to the developing brain, the etiology of CP is likely varied and the clinical outcomes are diverse. There is now a large body of evidence supporting a significant role for genetics in causation of CP. An increasing number of studies have identified likely causative genetic variants in families with CP, as well as in individual sporadic cases. Next-generation sequencing is now aiding clinicians in making specific molecular diagnoses, providing future opportunities for tailored treatments and for informed reproductive decisions.


Assuntos
Paralisia Cerebral/diagnóstico , Paralisia Cerebral/genética , Variação Genética/genética , Humanos , Análise de Sequência de DNA
4.
Mol Psychiatry ; 21(1): 133-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25644381

RESUMO

X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.


Assuntos
Variação Genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Animais , Células Cultivadas , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Estudos de Coortes , Quinases Ciclina-Dependentes/genética , Sequenciamento de Nucleotídeos em Larga Escala , Histona Acetiltransferases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Ubiquitina-Proteína Ligases/genética
5.
Mol Psychiatry ; 17(11): 1103-15, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22182939

RESUMO

The nonsense-mediated mRNA decay (NMD) pathway was originally discovered by virtue of its ability to rapidly degrade aberrant mRNAs with premature termination codons. More recently, it was shown that NMD also directly regulates subsets of normal transcripts, suggesting that NMD has roles in normal biological processes. Indeed, several NMD factors have been shown to regulate neurological events (for example, neurogenesis and synaptic plasticity) in numerous vertebrate species. In man, mutations in the NMD factor gene UPF3B, which disrupts a branch of the NMD pathway, cause various forms of intellectual disability (ID). Using Epstein Barr virus-immortalized B cells, also known as lymphoblastoid cell lines (LCLs), from ID patients that have loss-of-function mutations in UPF3B, we investigated the genome-wide consequences of compromised NMD and the role of NMD in neuronal development and function. We found that ~5% of the human transcriptome is impacted in UPF3B patients. The UPF3B paralog, UPF3A, is stabilized in all UPF3B patients, and partially compensates for the loss of UPF3B function. Interestingly, UPF3A protein, but not mRNA, was stabilised in a quantitative manner that inversely correlated with the severity of patients' phenotype. This suggested that the ability to stabilize the UPF3A protein is a crucial modifier of the neurological symptoms due to loss of UPF3B. We also identified ARHGAP24, which encodes a GTPase-activating protein, as a canonical target of NMD, and we provide evidence that deregulation of this gene inhibits axon and dendrite outgrowth and branching. Our results demonstrate that the UPF3B-dependent NMD pathway is a major regulator of the transcriptome and that its targets have important roles in neuronal cells.


Assuntos
Perfilação da Expressão Gênica/métodos , Deficiência Intelectual/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Proteínas de Ligação a RNA/genética , Encéfalo/crescimento & desenvolvimento , Linhagem Celular , Linhagem Celular Transformada , Células Cultivadas , Proteínas Ativadoras de GTPase/genética , Expressão Gênica/genética , Hipocampo/anatomia & histologia , Hipocampo/crescimento & desenvolvimento , Humanos , Mutação , Neurônios/citologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética
7.
Hum Mol Genet ; 10(4): 317-28, 2001 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11157795

RESUMO

Nemaline myopathy is a hereditary disease of skeletal muscle defined by a distinct pathology of electron-dense accumulations within the sarcomeric units called rods, muscle weakness and, in most cases, a slow oxidative (type 1) fiber predominance. We generated a transgenic mouse model to study this disorder by expressing an autosomal dominant mutant of alpha-tropomyosin(slow) previously identified in a human cohort. Rods were found in all muscles, but to varying extents which did not correlate with the amount of mutant protein present. In addition, a pathological feature not commonly associated with this disorder, cytoplasmic bodies, was found in the mouse and subsequently identified in human samples. Muscle weakness is a major feature of this disease and was examined with respect to fiber composition, degree of rod-containing fibers, fiber mechanics and fiber diameter. Hypertrophy of fast, glycolytic (type 2B) fibers was apparent at 2 months of age. Muscle weakness was apparent in mice at 5-6 months of age, mimicking the late onset observed in humans with this mutation. The late onset did not correlate with observed changes in fiber type and rod pathology. Rather, the onset of muscle weakness correlates with an age-related decrease in fiber diameter and suggests that early onset is prevented by hypertrophy of fast, glycolytic fibers. We suggest that the clinical phenotype is precipitated by a failure of the hypertrophy to persist and therefore compensate for muscle weakness.


Assuntos
Desenvolvimento Muscular , Fibras Musculares de Contração Lenta/patologia , Debilidade Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Miopatias da Nemalina/genética , Mutação Puntual , Tropomiosina/genética , Substituição de Aminoácidos/genética , Animais , Arginina/genética , Modelos Animais de Doenças , Dissecação , Feminino , Glicólise/genética , Humanos , Hipertrofia , Corpos de Inclusão/patologia , Corpos de Inclusão/ultraestrutura , Metionina/genética , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Microtúbulos/patologia , Microtúbulos/ultraestrutura , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Rápida/ultraestrutura , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/ultraestrutura , Debilidade Muscular/patologia , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/ultraestrutura , Miopatias da Nemalina/patologia , Miopatias da Nemalina/fisiopatologia , Oxirredução , RNA Mensageiro/biossíntese , Retículo Sarcoplasmático/patologia , Retículo Sarcoplasmático/ultraestrutura , Estrôncio/farmacologia , Tropomiosina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...